Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Non-reciprocal regulation of the redox state of the glutathione-glutaredoxin and thioredoxin systems.

Identifieur interne : 000F24 ( Main/Exploration ); précédent : 000F23; suivant : 000F25

Non-reciprocal regulation of the redox state of the glutathione-glutaredoxin and thioredoxin systems.

Auteurs : Eleanor W. Trotter [Royaume-Uni] ; Chris M. Grant

Source :

RBID : pubmed:12612609

Descripteurs français

English descriptors

Abstract

Our studies in yeast show that there is an essential requirement for either an active thioredoxin or an active glutathione (GSH)-glutaredoxin system for cell viability. Glutathione reductase (Glr1) and thioredoxin reductase (Trr1) are key regulatory enzymes that determine the redox state of the GSH-glutaredoxin and thioredoxin systems, respectively. Here we show that Trr1 is required during normal cell growth, whereas there is no apparent requirement for Glr1. Analysis of the redox state of thioredoxins and glutaredoxins in glr1 and trr1 mutants reveals that thioredoxins are maintained independently of the glutathione system. In contrast, there is a strong correlation between the redox state of glutaredoxins and the oxidation state of the GSSG/2GSH redox couple. We suggest that independent redox regulation of thioredoxins enables cells to survive in conditions under which the GSH-glutaredoxin system is oxidized.

DOI: 10.1038/sj.embor.embor729
PubMed: 12612609
PubMed Central: PMC1315827


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Non-reciprocal regulation of the redox state of the glutathione-glutaredoxin and thioredoxin systems.</title>
<author>
<name sortKey="Trotter, Eleanor W" sort="Trotter, Eleanor W" uniqKey="Trotter E" first="Eleanor W" last="Trotter">Eleanor W. Trotter</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD</wicri:regionArea>
<wicri:noRegion>Manchester M60 1QD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grant, Chris M" sort="Grant, Chris M" uniqKey="Grant C" first="Chris M" last="Grant">Chris M. Grant</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2003">2003</date>
<idno type="RBID">pubmed:12612609</idno>
<idno type="pmid">12612609</idno>
<idno type="doi">10.1038/sj.embor.embor729</idno>
<idno type="pmc">PMC1315827</idno>
<idno type="wicri:Area/Main/Corpus">000F47</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F47</idno>
<idno type="wicri:Area/Main/Curation">000F47</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F47</idno>
<idno type="wicri:Area/Main/Exploration">000F47</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Non-reciprocal regulation of the redox state of the glutathione-glutaredoxin and thioredoxin systems.</title>
<author>
<name sortKey="Trotter, Eleanor W" sort="Trotter, Eleanor W" uniqKey="Trotter E" first="Eleanor W" last="Trotter">Eleanor W. Trotter</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD</wicri:regionArea>
<wicri:noRegion>Manchester M60 1QD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grant, Chris M" sort="Grant, Chris M" uniqKey="Grant C" first="Chris M" last="Grant">Chris M. Grant</name>
</author>
</analytic>
<series>
<title level="j">EMBO reports</title>
<idno type="ISSN">1469-221X</idno>
<imprint>
<date when="2003" type="published">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Glutaredoxins (MeSH)</term>
<term>Glutathione (metabolism)</term>
<term>Glutathione Reductase (genetics)</term>
<term>Glutathione Reductase (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidoreductases (MeSH)</term>
<term>Proteins (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Thioredoxin Reductase 1 (MeSH)</term>
<term>Thioredoxin-Disulfide Reductase (genetics)</term>
<term>Thioredoxin-Disulfide Reductase (metabolism)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Glutarédoxines (MeSH)</term>
<term>Glutathion (métabolisme)</term>
<term>Glutathione reductase (génétique)</term>
<term>Glutathione reductase (métabolisme)</term>
<term>Oxidoreductases (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines (métabolisme)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Thioredoxin reductase 1 (MeSH)</term>
<term>Thioredoxin-disulfide reductase (génétique)</term>
<term>Thioredoxin-disulfide reductase (métabolisme)</term>
<term>Thiorédoxines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutathione Reductase</term>
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione</term>
<term>Glutathione Reductase</term>
<term>Proteins</term>
<term>Thioredoxin-Disulfide Reductase</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Glutaredoxins</term>
<term>Oxidoreductases</term>
<term>Thioredoxin Reductase 1</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutathione reductase</term>
<term>Saccharomyces cerevisiae</term>
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutathion</term>
<term>Glutathione reductase</term>
<term>Protéines</term>
<term>Saccharomyces cerevisiae</term>
<term>Thioredoxin-disulfide reductase</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Oxidoreductases</term>
<term>Oxydoréduction</term>
<term>Thioredoxin reductase 1</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Our studies in yeast show that there is an essential requirement for either an active thioredoxin or an active glutathione (GSH)-glutaredoxin system for cell viability. Glutathione reductase (Glr1) and thioredoxin reductase (Trr1) are key regulatory enzymes that determine the redox state of the GSH-glutaredoxin and thioredoxin systems, respectively. Here we show that Trr1 is required during normal cell growth, whereas there is no apparent requirement for Glr1. Analysis of the redox state of thioredoxins and glutaredoxins in glr1 and trr1 mutants reveals that thioredoxins are maintained independently of the glutathione system. In contrast, there is a strong correlation between the redox state of glutaredoxins and the oxidation state of the GSSG/2GSH redox couple. We suggest that independent redox regulation of thioredoxins enables cells to survive in conditions under which the GSH-glutaredoxin system is oxidized.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12612609</PMID>
<DateCompleted>
<Year>2003</Year>
<Month>08</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1469-221X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>4</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2003</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>EMBO reports</Title>
<ISOAbbreviation>EMBO Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Non-reciprocal regulation of the redox state of the glutathione-glutaredoxin and thioredoxin systems.</ArticleTitle>
<Pagination>
<MedlinePgn>184-8</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Our studies in yeast show that there is an essential requirement for either an active thioredoxin or an active glutathione (GSH)-glutaredoxin system for cell viability. Glutathione reductase (Glr1) and thioredoxin reductase (Trr1) are key regulatory enzymes that determine the redox state of the GSH-glutaredoxin and thioredoxin systems, respectively. Here we show that Trr1 is required during normal cell growth, whereas there is no apparent requirement for Glr1. Analysis of the redox state of thioredoxins and glutaredoxins in glr1 and trr1 mutants reveals that thioredoxins are maintained independently of the glutathione system. In contrast, there is a strong correlation between the redox state of glutaredoxins and the oxidation state of the GSSG/2GSH redox couple. We suggest that independent redox regulation of thioredoxins enables cells to survive in conditions under which the GSH-glutaredoxin system is oxidized.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Trotter</LastName>
<ForeName>Eleanor W</ForeName>
<Initials>EW</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grant</LastName>
<ForeName>Chris M</ForeName>
<Initials>CM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>EMBO Rep</MedlineTA>
<NlmUniqueID>100963049</NlmUniqueID>
<ISSNLinking>1469-221X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.7</RegistryNumber>
<NameOfSubstance UI="D005980">Glutathione Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D054481">Thioredoxin Reductase 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D013880">Thioredoxin-Disulfide Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005980" MajorTopicYN="N">Glutathione Reductase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="Y">Oxidoreductases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054481" MajorTopicYN="N">Thioredoxin Reductase 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013880" MajorTopicYN="N">Thioredoxin-Disulfide Reductase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2002</Year>
<Month>09</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2002</Year>
<Month>10</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2002</Year>
<Month>11</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>3</Month>
<Day>4</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2003</Year>
<Month>8</Month>
<Day>12</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>3</Month>
<Day>4</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12612609</ArticleId>
<ArticleId IdType="doi">10.1038/sj.embor.embor729</ArticleId>
<ArticleId IdType="pii">embor729</ArticleId>
<ArticleId IdType="pmc">PMC1315827</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Cell. 1996 Nov;7(11):1805-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8930901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1996 May;29(6):511-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8662189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jul 4;272(27):17045-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9202020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Dec 5;272(49):30780-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9388218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Mar 6;273(10):5431-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9488661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1998 May;9(5):1081-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9571241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1998 Dec 30;253(3):893-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9918826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1998;32:163-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9928478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1996 Jul;21(1):171-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8843443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1999 Oct;4(4):469-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10549279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Feb 25;275(8):5723-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10681558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2000 Jun;36(5):1167-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10844700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2000;54:439-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11018134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2001 Feb;39(3):533-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11169096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2001 Jun 1;30(11):1191-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11368918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Sep 14;276(37):34738-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11461905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Feb;43(4):993-1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11929546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 10;277(19):16712-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11875065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Nov;46(3):869-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12410842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2001 Apr;1(1):57-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12702463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1983;52:711-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6137189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Aug 25;264(24):13963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2668278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Jan 25;266(3):1692-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1988444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 May 15;266(14):9194-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2026619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Sep;14(9):5832-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7915005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;252:283-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7476363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jun 20;272(25):15661-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9188456</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Grant, Chris M" sort="Grant, Chris M" uniqKey="Grant C" first="Chris M" last="Grant">Chris M. Grant</name>
</noCountry>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Trotter, Eleanor W" sort="Trotter, Eleanor W" uniqKey="Trotter E" first="Eleanor W" last="Trotter">Eleanor W. Trotter</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F24 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F24 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:12612609
   |texte=   Non-reciprocal regulation of the redox state of the glutathione-glutaredoxin and thioredoxin systems.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:12612609" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020